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Abstract. Reanalysis products provide spatially homogeneous coverage for a variety of climate variables in regions where

observational data are limited. However, very little validation of reanalysis soil temperatures in the Arctic has been performed

to date, because widespread in situ reference observations have historically been unavailable there. Here we validate pan-Arctic

soil temperatures from eight reanalysis and LDAS products, using a newly-assembled database of in situ data from diverse

measurement networks across Eurasia and North America. We find that most products have soil temperatures that are biased5

cold by 2-7 K across the Arctic, and that biases and RMSE are generally largest in the cold season. Monthly mean values from

most products correlate well with in situ data (R > 0.9) in the warm season, but show lower correlations (r = 0.6 - 0.8), in many

cases, over the cold season. Similarly, the magnitude of monthly variability in soil temperatures is well captured in summer,

but overestimated by 20% to 50% for several products in winter. The suggestion is that soil temperatures in reanalysis products

are subject to much higher uncertainty when the soil is frozen and/or when the ground is snow-covered. We also validate10

the ensemble mean of all products, and find that when all seasons, and metrics are considered, the ensemble mean generally

outperforms any individual product in terms of its correlation and variability, while maintaining relatively low biases. As such,

we recommend the ensemble mean soil temperature product for a wide range of applications - such as the validation of soil

temperatures in climate models, and to inform models that require soil temperature inputs, such as hydrological models, or for

permafrost simulations.15

1 Introduction

Soil temperature is an important control of many physical, hydrological, and land surface processes, as soils act as a reservoir

for energy and moisture underground. It provides an important initial condition for numerical weather prediction, as energy

and water fluxes from the land are important for convective processes (Dirmeyer et al., 2006; Kim and Wang, 2007; Siqueira

et al., 2009). As soils react relatively slowly to variations in weather, soil temperature is also an important predictor of seasonal20

and mid-term weather forecasts (Xue et al., 2012). Soils over large portions of the Arctic are perennially frozen (permafrost

soil). Roughly 800 gigatonnes of carbon (GtC) is estimated to be stored in permafrost soils across the Northern Hemisphere

(Hugelius et al., 2014); about twice the amount of carbon currently residing in the atmosphere (Tarnocai et al., 2009). Continued
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warming, and thawing of permafrost soils, and related decomposition of carbon could act as a positive feedback on warming,

by releasing more methane (CO2) and carbon dioxide (CH4) to the atmosphere (Koven et al., 2011; Schuur et al., 2015).25

In situ based soil temperature monitoring networks using thermistor probes, particularly at high latitudes, are limited in terms

of their spatial and temporal coverage (Yi et al., 2019), making it difficult to assess hemispheric scale changes in permafrost.

Reanalysis products have been used in a variety of weather and climate applications to provide information on a regular spatial

grid; particularly in regions where limited or no observational data is available (Koster et al., 2004; Zhang et al., 2008). Previous

studies validating reanalysis soil temperature have primarily focused on the middle latitudes, such as across China (Yang and30

Zhang, 2018; Xu et al., 2019; Zhan et al., 2020), the Qinqhai-Tibetan plateau (Hu et al., 2019; Qin et al., 2020; Wu et al.,

2018), Europe (Albergel et al., 2015; Johannsen et al., 2019), and the continental United States (Albergel et al., 2015; Xia

et al., 2013), with a couple of recent studies validating soil temperatures globally (Li et al., 2020c; Ma et al., 2021). Relative

to in situ ground temperature probe networks, most reanalysis products are biased cold by about 2◦C - 5◦C, on average (Hu

et al., 2019; Qin et al., 2020; Yang and Zhang, 2018). Ma et al. (2021) found that most reanalysis products show larger cold35

biases over polar regions than they do over tropical and temperature regions, while a recent study by Cao et al. (2020) found

that ERA5-Land soil temperatures were biased warm over the Arctic, particularly in winter.

Several explanations have been suggested for the biases in reanalysis soil temperatures, including model parameterizations

(Albergel et al., 2015; Cao et al., 2020; Chen et al., 2015; Wu et al., 2018; Xiao et al., 2013), air temperature biases (Cao et al.,

2020; Hu et al., 2017), errors in topography and elevation, arising from the coarse resolution of reanalysis products (Yang and40

Zhang, 2018; Zhao et al., 2008; Ma et al., 2021), and errors in simulated snow cover and snow thermal insulation (Cao et al.,

2020; Royer et al., 2021).

While soil temperature biases in individual reanalysis products may limit their utility, a consensus is emerging that multi-

reanalysis ensemble, based on the same principle as ensemble weather prediction (World Meteorological Organization, 2012),

are an effective way to increase the signal-to-noise ratio for many important geophysical variables. Ensemble mean datasets45

based on combinations of in situ, model, satellite and reanalysis data have been used to reduce biases in estimates of snow

water equivalent (Mudryk et al., 2015), soil moisture (Dorigo et al., 2017; Gruber and Scanlon, 2019), as well as precipitation

(Beck et al., 2017, 2019), and Hu et al. (2019) suggest that a similar method could be used to reduce biases in reanalysis soil

temperatures.

Reanalysis soil temperatures have been relatively well characterized over the middle latitudes. Studies validating Arctic50

soil temperatures in reanalysis products, however, have either focused on a singular product (Cao et al., 2020), or have only

considered a limited spatial extent (Li et al., 2020c; Ma et al., 2021).

Here we perform a validation of pan-Arctic (and Boreal) soil temperatures from eight reanalysis and land data assimilation

system (LDAS) products. The main objectives are to 1) validate the 8 reanalysis and LDAS products in terms of their bias,

RMSE, correlation and standard deviation of Arctic soil temperatures, and 2) investigate whether an ensemble mean soil55

temperature product outperforms the individual reanalysis products.
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2 Data

2.1 Reanalysis and LDAS Data

Table 1 outlines the six reanalysis and two LDAS soil temperature products used in this study. For simplicity, the term

"reanalysis" will hereafter be used to describe both reanalysis and LDAS products. A summary of each product follows below.60

Products were remapped onto the GLDAS-CLSM grid for comparison, using three different methods: nearest neighbour,

bilinear interpolation, and first-order conservative remapping. The choice of remapping method did not affect the overall

conclusions of the study, and the analysis is based on data remapped using the conservative remapping method, as it facilitated

the use of the largest number of validation sites and grid cells.

The reanalysis products investigated span a wide range of horizontal resolutions, ranging between 0.1◦, in the case of65

ERA5-Land, to 1.0◦ for both GLDAS products. Most products (CFSR, ERA-Interim, ERA5, ERA5-Land, and GLDAS-Noah)

simulate soil temperature across 4 vertical layers, while MERRA and GLDAS-CLSM include 6 vertical layers, and JRA-55

calculates soil temperature across a single layer. The topmost soil layer has the highest resolution (7 cm to 10 cm in most

cases), while the bottom soil layer often averages soil properties over a metre or more (Table 1).

The Noah Land Surface Model (Noah-LSM) (Chen et al., 1996; Betts et al., 1997; Koren et al., 1999; Ek, 2003) is used70

by CFSR and GLDAS-Noah. CFSR uses the Noah-LSM in a fully coupled mode to obtain a first-guess land-atmosphere

simulation, before operating in a semi-coupled mode with GLDAS to obtain information about the state of the land surface

(Saha et al., 2010). GLDAS, however, is run in an offline mode, utilizing meteorological forcing from Princeton University

between 1948 to 2000 (Sheffield et al., 2006), and a combination of model and observational data from 2000 - onwards (Rui

et al., 2018).75

ERA-Interim, ERA5 and ERA5-Land use versions of the Tiled ECMWF Scheme for Surface Exchanges over Land (TES-

SEL) land model (Viterbo, 1995; Viterbo and Betts, 1999). In the case of ERA-Interim, TESSEL is informed by empirical

corrections from 2m (surface) air temperature and humidity (Dee et al., 2011). Meanwhile, ERA5 and ERA5-Land use an

updated version of TESSEL, known as the Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL)

(Balsamo et al., 2015). In ERA5, a weak coupling exists between the land surface and atmosphere, while an advanced LDAS80

that incorporates information regarding the near-surface air temperature, relative humidity, as well as snow cover (de Rosnay

et al., 2014), along with satellite estimates of soil moisture and soil temperature from the top 1m of soil (de Rosnay et al.,

2013). ERA5-Land, unlike ERA5, does not directly assimilate observational data. Instead, the ERA5 meteorology (such as

air temperature, humidity and atmospheric pressure) is used as forcing information for HTESSEL; allowing it to be run at

higher resolutions (Muñoz-Sabater et al., 2021). It includes an improved parameterization of soil thermal conductivity allow-85

ing for it to account for ice content in frozen soil; improvements to soil water balance conservation; and the ability to capture

rain-on-snow events (Muñoz-Sabater et al., 2021).

Both GLDAS-CLSM and MERRA2 utilize the the Catchment Land Surface Model (Ducharne et al., 2000; Koster et al.,

2000). Though MERRA2 does not include a land surface analysis (Gelaro et al., 2017), CLSM is informed using an updated

version of the Climate Prediction Center unified gauge-based analysis of global daily precipitation (CPCU) precipitation cor-90
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rection algorithm that originated in MERRA-Land. No corrections are available, however, for high latitude regions north of

62.5◦ N (Reichle et al., 2017). In the case of GLDAS-CLSM, CLSM is run in an offline mode, in a similar configuration to

GLDAS-Noah. Finally, JRA-55 uses the Simple Biosphere Model (SiB) (Onogi et al., 2007; Sato et al., 1988; Sellers et al.,

1986) in an offline mode, forced by atmospheric data and data from land surface analyses that incorporate microwave satellite

retrievals of snow cover (Kobayashi et al., 2015).95

2.2 Observational Data

Owing to the lack of dense soil temperature monitoring networks in the Arctic, most of the observed soil temperature record

is characterized by sparse measurements with inconsistencies in the temporal periods that they cover (Yi et al., 2019). Rather

than limit our validation to a small geographic region in the permafrost zone, as several prior studies have done (Hu et al.,

2019; Qin et al., 2020; Wu et al., 2018; Ma et al., 2021; Li et al., 2020c), we choose to make use of data from a variety of100

sparse networks. Such an approach has been used to validate soil temperature and permafrost performance in ERA5-Land (Cao

et al., 2020), and allows for the examination of larger geographic regions, as well as for the inclusion of a more diverse set of

vegetation types across the continent Ma et al. (2021).

To the authors’ knowledge, this is one of the first studies to compile a comprehensive set of in situ soil temperature

measurements across the Eurasian and North American Arctic, from multiple diverse sparse networks. We incorporate data105

from the Roshydromet Network in Russia (Sherstiukov, 2012), Nordicana series D (Nordicana) (Allard et al., 2020; CEN,

2020a, b, c, d, e, f, g), Global Terrestrial Network for Permafrost (GTN-P) (GTN-P, 2018), and Kropp et al. (2020) - in an

attempt to provide a representative estimate of soil temperature across the circumpolar Arctic. Our validation data also includes

sites from outside regions typically underlain by permafrost, in order to facilitate a comparison of the performance of reanal-

ysis soil temperatures at high latitudes with their performance in regions outside the permafrost zone. This provides a unique110

baseline upon which to perform a hemispheric wide assessment of soil temperature in reanalysis and LDAS systems.

The authors do acknowledge that there is a large discrepancy in the sampling of grid cells across North America and Eurasia,

however we have done so in order to make use of all available data. Unfortunately, data availability is limited across much of

the Canadian North, as it has been historically under-sampled relative to Eurasia (Metcalfe et al., 2018).

In order to compare with data from reanalysis and LDAS products, temperatures were averaged across two depth bins: a near115

surface layer (0 cm to 30 cm), and soil temperatures at depth (30 cm to 300 cm). For each site, temperatures from all depths

residing within a layer were averaged, producing an estimated layer averaged temperature for every time-step. Data from 51

North American stations, and 247 Eurasian station were used to estimate estimate monthly average temperatures in the near

surface layer, while 38 (256) stations from North America (Eurasia) contributed to estimates of monthly average temperatures

at depth.120

Many of the in situ (station) sites reported measurements at hourly or daily frequency, however we chose to perform the

analysis at monthly time scales, as soil temperatures do not vary much over shorter timescales. As such, once a layer average

had been calculated for a site, a monthly average temperature was then estimated. Daily average temperatures (Tday) were

calculated for each station with a timestep smaller than 1 day, using all available data, when there was at least one temperature
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record available on a given date. Tday were then used to calculate a station’s monthly average temperature (Tsoil). Outlier125

detection was performed on in situ data before monthly averaging, by removing datapoints that fell outside 3.5σ from the mean

soil temperature of the dataset.

Since the station data often included days with missing observations, the sensitivity of the monthly averages to missing data

was tested, by computing monthly averages in five ways: using all months with at least one valid day in a month, using all

months with at least 25, 50, and 75 percent valid data, and finally using all months with no missing data in a month. It was130

found that Tsoil was not substantially impacted by the inclusion or exclusion of months containing missing data.

In order to be considered as a validation location, the grid cell was required to include soil temperature data for all eight

reanalysis/LDAS products, and be collocated with at least one in situ station. Duplicate stations across datasets were excluded.

In situ locations were only included if there was at least 2 years worth of in situ data, in order to properly assess the station’s

seasonal cycle. For grid cells containing multiple in situ stations, the value used in the comparison is a simple spatial average135

of the in situ stations in that grid cell on each calendar day.

Over Eurasia, the vast majority of grid cells contain a single in situ measurement location. In North America, however,

several Alaskan grid cells contain three or more in situ stations. The near surface layer layer includes 271 validation grid cells,

while at depth, there are 272 grid cells with minimal variation in their location relative to the near surface (Figure 1, panel

A). Panel B of Figure 1 shows the spatial standard deviation of monthly surface soil temperatures for grid cells with more140

than two stations included. The number of stations included in each grid cell ranges between two to 12. The median standard

deviation is generally≤ 2◦ C, though the temporal variation (spread) is quite large for several stations. This suggests that while

differences in Tsoil at in situ stations within a grid cell are generally within a few degrees of one another, there are times when

the differences can be quite large.

3 Methods145

3.1 Validation Metrics

Reanalysis/LDAS and observational (station) soil temperature data were collocated with one another spatially and tempo-

rally. Grid-cell level soil temperatures from each product were compared against in situ soil temperatures using the following

statistical metrics: bias (Eq. 1), root-mean-squared-error (RMSE) (Eq. 2), normalized standard deviation (SDVnorm) (Eq. 3

and Eq. 4), and the Pearson correlation (R) (Eq. 5). Statistical metrics were calculated as follows:150

Bias =
1
N

N∑

n=1

(Tp−Ti) (1)

6
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Figure 1. Panel A: location of the validation grid cells collocated with in situ stations in the near-surface layer. Grid cells are colour coded
based on mean annual air temperature (MAAT); a proxy for permafrost zone. The locations of the validation grid cells differ minimally in
the depth (30 cm to 300 cm) layer. Panel B: temporal spread in spatial standard deviation of monthly soil temperatures near the surface, for
grid cells with multiple in situ stations (the number of stations is included in brackets beside the letter). Their location is shown in Panel A.

RMSE =

√√√√ 1
N

N∑

n=1

(Tp−Ti)2 (2)

SDV =

√∑N
n=1(xn−x)

N − 1
(3)155

SDVnorm =
SDVTp

SDVTi

(4)

R =
1
N

∑N
n=1(Tp−Tp)(Ti−Ti)
SDVTp

SDVTi

(5)
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Where Tp is the Tsoil from the reanalysis product, Ti is the Tsoil of the in situ data, N is the number of monthly soil160

temperature values, SDVTp
and SDVTi

are the standard deviations of the reanalysis product soil temperatures and in situ soil

temperatures, respectively, while x refers to the Tsoil (of a dataset).

Metrics were calculated separately for each individual grid cell, and then averaged to calculate a pan-Arctic estimate. Esti-

mates for the permafrost zone and the zone with little to no permafrost were also calculated by averaging together metrics from

grid cells falling within a particular zone.165

3.2 Binning of Datasets by Season and Mean Annual Air Temperature

Datasets were binned into a cold season and warm season using the Berkeley Earth Surface Temperature (BEST) 2m air

temperature (Tair) for each grid cell. Cold season months are those where Tair ≤ -2◦ C, while the warm season refers to

months with Tair > -2◦ C, where Tair is the monthly mean air temperature. Sensitivity testing on the cold/warm season

revealed no substantive impact on our conclusions using a threshold of 0◦ C, -5◦ C, and -10◦ C. We also tested the impact of170

using a different temperature dataset to perform the binning; the ERA5 2m air temperature, which resulted in similar findings.

Soil temperatures were also also separated based on the 1981-2010 BEST mean annual air temperature, in order to estimate

continuous (≥ 90% permafrost), discontinuous (50 - 89.9% permafrost), and regions with little to no permafrost (< 50%

permafrost). Smith and Riseborough (2002) found that the continuous permafrost zone is roughly consistent with a MAAT

between -6◦ C to -8◦ C, while the discontinuous permafrost zone boundary varies somewhat depending on soil organic matter175

content. For regions with primarily inorganic (mineral) soil, the southern boundary of the discontinuous permafrost zone

was roughly consistent with a MAAT of -2◦ C, whereas for areas underlain by soils with a heavy organic matter content,

the boundary was closer to the +1◦ C MAAT isotherm. As soil organic matter content was not available for the reanalysis

products, the following MAAT boundaries were used in this study as a general approximation of permafrost type across the

study domain:180

1. locations with a MAAT ≤ -7◦ C are referred to as being in the ’continuous permafrost’ zone

2. locations where -2◦ C ≤ MAAT > -7◦ C are referred to as having ’discontinuous permafrost’

3. locations with a MAAT > -2◦ C are referred to as falling within the ’little to no permafrost’ zone

The resultant permafrost distribution (Figure 1) is roughly consistent with the Brown et al. (2002) permafrost map. To

maximize the sample size in each group, we merge the ’continuous’ and ’discontinuous’ permafrost zones into a single category185

called the ’permafrost zone’, and compare against the zone with ’little to no permafrost’.
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4 Validation of Reanalysis and LDAS Products

4.1 Warm Season

Most products show small to moderate negative (cold) biases over the warm season (Figure 2); a finding similar to previous

studies investigating reanalysis soil temperatures over the mid-latitudes and the Qinghai-Tibetan Plateau (Hu et al., 2017; Qin190

et al., 2020; Yang et al., 2020). Warm season biases (Figure 2, Panels C and D) tend to be slightly larger at depth for most

products (by 1◦ C - 2◦ C). JRA-55, however, displays substantially more negative biases near the surface – suggesting that it

underestimates summer soil temperatures near the surface.

Over the warm season, most reanalysis products display correlations greater than 0.95 near the surface, and close to 0.9 at

depth (Figure 3, Panels C and D). JRA-55, however, displays a correlation of 0.4 near the surface; arising from the fact that its195

Tsoil display a large spread for a given station temperature (red scatter) (Figure 4, top row). For example, while the histogram

for the station data shows that Tsoil rarely falls below 0◦ C near the surface, in the warm season, frozen soil occurs relatively

regularly in JRA-55 during the warm season (Figure 4); likely suggesting that JRA-55’s single soil layer is more representative

of deeper soil layers (which are more likely to remain frozen year round). Most products generally capture the warm season

variability in Tsoil, and are within 20% of the observed – both at depth and near the surface (Figure 3, Panels C and D).200

4.2 Cold Season

Over the cold season, biases tend to be larger (more negative) near the surface, relative to the warm season; particularly in

the cases of GLDAS-Noah, GLDAS-CLSM, and ERA-Interim, where cold season biases are several degrees larger (Figure 2,

Panels A and B). ERA5-Land, however, shows a slight overall positive (warm) bias, because of substantial positive biases over

the coldest temperature ranges (Figure 5), and over Siberia and North America (Figure S1); qualitatively similar to the findings205

of Cao et al. (2020). At depth, half of the products show smaller cold season biases (relative to the warm season), while the

biases are of a similar magnitude for the remaining products. Most products show a maximum bias when Tsoil is between -2◦

C to -10◦ C, and there is a tendency for biases to decrease or flip sign over the coldest temperatures (Figure 5).

Cold season correlations are generally lower; particularly near the surface, where correlations are often 25% to 35% smaller

than they are over the warm season (Figure 3, panel A). In addition, there is less agreement between products, with a spread of210

0.26 between the product with the lowest correlation (JRA-55), and the product most correlated with in situ (Ensemble Mean).

At depth, seasonal differences in correlations are smaller, though cold season correlations for most products are 5% to 10%

lower than their warm season counterparts (Figure 3, panel B).

Several products overestimate the in situ standard deviation in the cold season - particularly over Eurasia, though ERA5-

Land underestimates the cold season standard deviation by approximately 25% to 50% (Figure 3, panel A and B) - arising in215

part due to the wintertime positive biases over large portions of the northern hemisphere (see Figure S2 and Cao et al. (2020)

for further details). The increased variance in Tsoil in the cold season suggests that reanalysis products have a greater degree

of temperature variability in the winter. Along the topmost row (near-surface) and leftmost column (depth) of Figure 4 are

scatterplots of soil temperatures from each of the eight reanalysis products, relative to in situ data. There is a larger range of
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Figure 2. Bias (stippling) and Root Mean Square Error (RMSE) (solid colour) for the cold season (blue) (≤ -2◦ C) and the warm season
(red) (> -2◦ C) performance of reanalysis products. Panel A displays the bias and RMSE for the near surface (0 cm to 30 cm) layer, while
panel B displays the bias and RMSE at depth (30 cm to 300 cm). Models are ordered based on cold season RMSE (from the smallest to
largest). The ensemble mean is shown beside for comparison.

temperatures for a given observed soil temperature in the cold season (blue scatter) than there is over the warm season (red220

scatter), both at depth, and near the surface. Second, there is a greater spread in standard deviations between products at colder
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Figure 3. Taylor Diagram of the cold season (≤ -2◦ C) and the warm season (> -2◦ C) performance of reanalysis products. Panels A and B
refer to the cold season, while panels C and D refer to the warm season. The top panels (panels A and B) are for the near surface (0 cm to 30
cm) while the bottom panels (panels C and D) refer to soil temperatures at depth (30 cm to 300 cm).
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Figure 4. Scatterplot matrix of station and reanalysis soil temperatures. The top triangle (right of the histograms) refers to soil temperatures
in the near-surface (0 cm to 30 cm) layer, while the bottom triangle represents soil temperatures at depth (30 cm to 300 cm). Seasons are
stratified by the ERA5 air temperature, with the cold season (≤ -2◦ C) in green and the warm season (>-2◦ C) in red.
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Figure 5. Reanalysis soil temperature bias as a function of station soil temperature for a) the near surface (0 cm to 30 cm) layer, and b) at
depth (30 cm to 300 cm). Station temperatures are binned into 4◦ C intervals, beginning with the -32◦ C to -28◦ C bin, and ending with the
28◦ C to 32◦ C bin. The midpoint of each temperature bin is plotted along the x-axis.
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temperatures. The spread is largest over the coldest temperature ranges (Figure 6), which suggests that colder climate regimes

are likely an important controlling factor on reanalysis performance. Snow has a low thermal conductivity that insulates the

soil, decoupling the air temperature above from the soil below the snow pack Zhang (2005). Cao et al. (2020) note that winter

warm biases in Tsoil in ERA5-Land could be partially explained by HTESSEL having a snow density that was biased low225

(relative to observations), leading to a snowpack thermal conductivity that was too low, and an associated overestimate of the

insulating effects of snow. Snow was also cited as a major controlling factor in soil temperature biases in ECMWF’s Integrated

Forecast System, which also uses the HTESSEL land surface model (Albergel et al., 2015).

Most products show a maximum standard deviation over the coldest Tsoil, whereas JRA-55 shows a maximum standard

deviation when the observed Tsoil are near freezing and shows a decline in standard deviation over the coldest temperatures230

(Figure 6), particularly near the surface (panel A).

4.3 Influence of Frozen Soils

Over our domain, there are grid cells over regions with substantial permafrost cover, as well as grid cells that fall outside the

region typically covered by permafrost. As there are differences in the physical processes governing soil temperatures across

regions covered by permafrost, it is important to mention differences in performance between these two regions. Bias and235

RMSE are typically 2◦ C to 4◦ C larger over the permafrost zone (in both seasons) (Fig. S2). The mean bias and RMSE are

typically 1◦ C to 3◦ C smaller over North America, relative to the permafrost zone in Eurasia (see Figure S3); however with

fewer grid cells over North America, the uncertainty is also larger - as evidenced by the larger error bars.

Correlations between the permafrost region and the zone with little to no permafrost are generally quite similar, rarely

differing by more than 0.1 (not shown). Individual models are more likely to overestimate the near surface variance over the240

zone with little to no permafrost, while the opposite is true at depth (not shown). In the permafrost zone, however, the spread

in standard deviation, at depth, is about 2.75 times larger than it is over the zone with little to no permafrost (not shown).

Over North America, several products overestimate the observed standard deviation in the warm season, while there is good

agreement between the reanalysis products and the observed standard deviation in Eurasia. Conversely, the cold season variance

is more likely to be overestimated over Eurasia (not shown). It is likely that sampling variability in Tsoil is a large contributing245

factor to the differences in variance between North America and Europe.

Several factors may explain the increased variability in soil temperatures over permafrost regions. First - snow cover is

present for longer, and may persist for longer on slopes with a northern aspect or where it has accumulated around vegetation.

Munkhjargal et al. (2020) observed an average difference in soil temperatures of 3◦ C to 4◦ C across the Qinghai-Tibetan

plateau in response to aspect. Second, near surface soil temperature is particularly sensitive to vegetation cover; shrub height250

and vegetation type were found to account for roughly half the variability in late winter and spring soil temperatures in the low

Arctic (Grünberg et al., 2020). Moreover, in the discontinuous permafrost zone, the presence of permafrost is often ecosystem

protected or ecosystem driven. Variability in vegetation and drainage, for example, may lead to localized portions of the

landscape where soil temperatures are colder than in surrounding areas (Jorgenson et al., 2010). Thirdly, latent heat interactions

in the active layer during spring can lead to long periods of time where the soil remains at or close to freezing (the zero-curtain255
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Figure 6. Reanalysis soil temperature standard deviation as a function of station soil temperature for a) the near surface (0 cm to 30 cm)
layer, and b) at depth (30 cm to 300 cm). Station temperatures are binned into 4◦ C intervals, beginning with the -32◦ C to -28◦ C bin, and
ending with the 28◦ C to 32◦ C bin. The midpoint of each temperature bin is plotted along the x-axis.
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period). In regions where the active layer is deep (such as over the discontinuous permafrost zone), the zero curtain period is

often longer and more pronounced (Chen et al., 2021) than it is over the continuous permafrost zone or regions with seasonally

frozen soil. Many of the processes that control the zero-curtain effect, such as freeze-thaw parameterizations are relatively

simplistic in many land models (Cao et al., 2020; Chen et al., 2015), and their coarse resolution would fail to capture local

scale variations in the zero-curtain period.260

5 Ensemble Mean Product

5.1 Validation

Having validated the performance of the individual products, here we construct a soil temperature product based on the

ensemble mean of the products, and investigate its performance. Taking the ensemble mean of all eight soil temperature prod-

ucts produces a soil temperature dataset that shows closer agreement with observed soil temperatures than most/all individual265

products. The ensemble mean bias and RMSE are generally quite close in magnitude to the best performing products over all

regions, seasons, and depths (Figure 2). Moreover, by sequentially increasing the number of products included in the ensemble

mean, we are able to demonstrate that greater number of products in the ensemble mean leads to a reduction in overall bias and

RMSE (Figure 7, panels A and B). Interestingly, the number of products included appears to be of greater importance to the

performance of the ensemble mean than which products are included, suggesting that most products share similar uncertainties270

and signal-to-noise ratios, and resulting, to a certain degree, in the offsetting of biases or errors.

In addition, the ensemble mean maintains a high correlation (often the highest of all products) over all seasons and depths

(Figure 3), and analogous improvements to correlation are seen as a greater number of models are included (Figure 7). Finally,

the ensemble mean standard deviation is close to the observed value over all seasons and depths (Figure 3), suggesting that

the seasonal variability in Tsoil is similar to the variability seen in the station data. Thus, the ensemble mean soil temperature275

dataset provides the best estimate of in situ temperatures for the broadest range of conditions.
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Figure 7. Root Mean Square Error (RMSE) (solid colour), and Pearson Correlation (stippling) for the cold season (blue) (≤ -2◦ C) and the
warm season (red) (> -2◦ C) averaged over all combinations of 1 model through to 8 model ensemble means. Panel A displays the RMSE
and correlation for the near surface (0 cm to 30 cm) layer, while panel B displays the RMSE and correlation at depth (30 cm to 300 cm).
Values are ordered based on cold season RMSE (from smallest to largest). Note that the y-axis scale is from -8◦ C to +10◦ C (rather than
-10◦ C to +10◦ C).
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Figure 8. Ensemble mean 1981-2010 near-surface climatology (panels A and B), variability (panels C and D), and 30-year trend (panels E
and F). Values for DJF are shown in the left hand panels, and those for JJA are shown in the right hand panels.
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5.2 Climatology (1981-2010)

Having established that an ensemble mean of products provides the best choice for Tsoil in most situations, in this Section

we characterize the pan-Arctic mean, variability and trends of the ensemble mean Tsoil product. Unlike in previous sections,

where the air temperature of a grid cell was used to separate the cold and warm season, this was not possible for a discussion280

of the climatology. Henceforth, in Sections 5.3 and 5.4, we use the DJF climatology to represent winter, and JJA climatology

to represent summer.

Near surface soil temperatures generally range between -12◦ C and -30◦ C for most regions north of 60◦ N in DJF, with

slightly warmer temperatures over the Yukon, Alaska, and Scandinavia (Figure 8, panel A). Temperatures are often a few

degrees warmer at depth, but the temperature pattern remains quite similar (DJF pattern correlation > 0.95 over the extratropical285

NH north of 45◦ N).

In JJA, most of the near surface soil temperatures across the Arctic rise above freezing, with the exception of a few locations

along Baffin Island and Ellesmere Island (as the top 30 cm is representative of the active layer). Temperatures generally range

between 6◦ C to 12◦ C, with cooler areas across Eastern North America, and along the northern coast of Siberia (Figure

8, panel B). At depth, (not shown), much of the Canadian Arctic Archipelago and the northern portions of Siberia remain290

below freezing, with most other regions showing soil temperatures between 0◦ C to 6◦ C (except for Scandinavia). JJA pattern

correlations in near-surface and depth soil temperature climatologies are > 0.95.
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Figure 9. Spatial map of bias for the Ensemble Mean product. Values for the cold season are shown in the left hand panels, and those for the
warm season are shown in the right hand panels. Panels A and B show the near surface bias, while biases at depth are shown in Panels C and
D.

While, not directly comparable to the climatology figure, cold season biases in the Ensemble Mean product are typically -4◦

C to -5◦ C over the permafrost zone, and -2◦ C to -3◦ C over much of the zone with little to no permafrost (Figure 9, panel

A). There is little difference in the cold season biases at depth, except for being slightly smaller in western Eurasia (Figure 9,295

panel C).

In the warm season, the near surface biases are generally small (around -1◦ C over much of Eurasia), except for a few grid

cells south of Siberia, where they are similar in magnitude to the cold season (around -4◦ C). Alaska and the Yukon, however,
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appear to show a small to moderate warm bias on the order of +1◦ C to +3◦ (Figure 9, panel B). At depth, the biases are

somewhat larger than they are at the surface, particularly over Eurasia, but the pattern remains similar to the near surface300

(Figure 9, panel D).

5.3 Variance and Trends (1981-2010)

Generally speaking, coastal regions show the greatest variability in Tsoil, with inland regions showing substantially smaller

variation. Temperature variability is larger in DJF than it is for JJA (Figure 8, Panels C and D). A similar pattern is generally

seen at depth, but with reduced variability (pattern correlation greater than 0.9 in DJF). In JJA, the pattern in variability is305

generally similar, though pattern correlations between surface and depth are closer to 0.58, owing to an increased sensitivity to

small changes standard deviation.

Decadal temperature trends (Figure 8) are the largest in DJF (panel E); reaching as large as 3◦ C per decade along the

northern coastlines. Inland regions typically see smaller DJF trends; closer to a degree per decade, at most. While most regions

show warming trends, portions of coastal Siberia and parts of western Eurasia see small to moderate cooling trends of 0.33◦310

C per decade to 1◦ C per decade over the thirty year period. Pattern correlations between near-surface and depth temperature

trends are greater than 0.95 in DJF.

JJA temperature trends (Figure 8, panel F) are generally much smaller in magnitude; usually between 0.33◦ C per decade to

0.66◦ C per decade, except along coastal regions where they range between 0.66◦ C per decade to 1◦ C per decade. Parts of

North America and central Eurasia show a slight cooling, while most of eastern Eurasia shows slight warming trends. Pattern315

correlations between near-surface and depth temperature trends over JJA are 0.86.

6 Discussion and Conclusions

This study conducted a validation of pan-Arctic soil temperatures for eight reanalysis products, and validated a new ensemble

mean pan-Arctic soil temperature dataset. Most reanalysis products show a negative (cold) soil temperature bias of several

degrees across the Arctic; one that is most prominent during the cold season, and over the highest latitudes. There is also320

greater disagreement between the reanalysis products’ estimates of soil temperature variability and correlation during the cold

season. When all depths and seasons are considered, the ensemble mean product performs better than any individual product.

All estimates of Tsoil are subject to uncertainty, and while we have not been able to present a complete quantitative assess-

ment of these sources of uncertainty, we have made some progress in their characterization. In particular, we identify four main

categories of uncertainty, and provide qualitative estimates of their importance:325

1. Uncertainties in data assimilation and configurations of atmospheric model

Many reanalysis products exhibit a positive air temperature bias near the surface over the Arctic (Beesley et al., 2000;

Lindsay et al., 2014; Tjernström and Graversen, 2009); particularly in winter, in association with temperature inversions

that are weaker than observed (Serreze et al., 2012; Tjernström and Graversen, 2009). Differences between products in
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the parameterization of cloud cover and small scale turbulent mixing have been highlighted as key sources of uncer-330

tainty in atmospheric reanalyses (Boisvert et al., 2018; Taylor et al., 2018), along with the near surface Arctic energy

budget (Graham et al., 2019). Reanalysis estimates of precipitation amount and phase are another important source of

uncertainty, and are especially hard to constrain over the Arctic, due to a lack of observations (Boisvert et al., 2018).

2. Uncertainties in the land model configuration and/or parameterizations:

The methods used here did not allow for explicit study of the impacts of land model configuration on soil temperature.335

Nevertheless, it is important to acknowledge that most land models fail to simulate important aspects of permafrost soils,

such as the influence of phase change on thermal conductivity (Cao et al., 2020), or include relatively crude parame-

terizations of freeze-thaw processes (Chen et al., 2015). Moreover, many current generation land models fail to capture

feedbacks that exist between vegetation and permafrost (Chadburn et al., 2015) - a factor particularly important in the

discontinuous permafrost zone, where permafrost presence (or absence) is heavily influenced by vegetation (Jorgenson340

et al., 2010). Land surface models, such as the Simple Biosphere Model (used in JRA-55), that use the force restore

method to estimate soil temperature, are prone to overestimating diurnal soil temperature range (Gao et al., 2004; Kahan

et al., 2006), as well as the seasonal cycle of soil temperatures (Luo et al., 2003). This is because they underestimate

heat capacity, and overestimate temporal variation in ground heat flux compared to more complex land models (Hong

and Kim, 2010). The force restore method assumes a strong diurnal forcing from above. In regions with substantial snow345

cover, such as the Arctic, this assumption is likely violated (Tilley and Lynch, 1998) because snow cover leads to a

decoupling of the surface forcing from the soil below, and may, in part, explain why JRA-55 displays a reduced standard

deviation in temperature over the cold season relative to most other products.

3. Instrumental uncertainties

The approach used here assumes that uncertainties in the in situ data are negligible, and hence are the ’true’ soil temper-350

ature in a particular grid cell. In situ soil temperature measurements, however, are taken as a point measurement, and as

such they may not be representative of the average soil temperature over a grid cell. As this is hard to explicitly account

for in linear metrics such as bias, RMSE, and correlation, it can result in non-negligible errors (Crow et al., 2012; Loew

and Schlenz, 2011); particularly when a limited number of stations are contributing to the spatially averaged station

temperature (as is the case over large parts of Eurasia). While the use of data from dense networks may improve the355

spatial representativeness of validation data (Zeng et al., 2015), their drawback is that they are often limited in terms of

the land cover types they represent (Zeng et al., 2015; Ma et al., 2021). ). This is particularly true in the Arctic where

data from dense networks is extremely limited.

An estimate of the uncertainty of the validation data was calculated using grid cells where multiple stations were avail-

able. The uncertainty is represented by the standard deviation of soil temperatures between stations within a grid cell360

for a particular timestep. While the median standard deviation of soil temperature between stations is generally ≤ 2◦

C for eight of the nine grid cells, there are periods of time when the standard deviation is substantially larger than this

(Figure 1, Panel B); consistent with the findings of in situ studies examining soil temperature variability at the site level
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(Scharringa, 1976; Gubler et al., 2011; Gruber et al., 2018) and at regional scales (Kropp et al., 2021; Grünberg et al.,

2020; Way and Lapalme, 2021; Zhang et al., 2021). Kropp et al. (2021) note that Tsoil can vary widely over small spatial365

scales in response to vegetation canopy structure; on scales of tens of metres in many cases Gruber et al. (2018). This is

particularly true in the cold season, as the presence or absence of vegetation has a strong control on snow accumulation.

By trapping snow, trees and shrubs lead to substantially warmer soil temperatures in their vicinity (Way and Lapalme,

2021). Moreover, the impact of snow cover on soil temperature is generally more pronounced over permafrost regions

(regions of seasonal frost) (Chen et al., 2021).370

Uncertainties can also arise from processes that occur within the soil itself; particularly in seasonally frozen and per-

mafrost soils. For example, rapid temperature fluctuations are often seen during the melt period, as melt-water can induce

strong, localized latent heat fluxes in the active layer - factors not easily captured in monthly mean temperatures over

large areas (Hinkel and Outcalt, 1995). Frost heave can lead to seasonal shifts in the position of the soil temperature

probes, resulting in seasonal discontinuities in soil temperature datasets between summer and winter (Streletskiy et al.,375

2017; Urban and Clow, 2017).

4. Sampling uncertainties

Uncertainties exist due to inconsistencies in data availability, both temporally and spatially. Some sites (particularly those

in Siberia, for example), included 30 years or more of data, while others were limited to a data record of a few years;

resulting in inconsistencies in the time period over which metrics were calculated for each grid cell. The authors also380

acknowledge there are substantially more validation grid cells over Eurasia, than over North America. In order to test

the impact of this, a Monte Carlo type simulation was constructed, whereby 25 (19) grid cells from the continuous and

discontinuous permafrost zones of Eurasia were randomly selected, alongside the 25 (19) North American grid cells, and

the mean bias, RMSE, standard deviation and Pearson Correlation were calculated for the 50 (38) grid cell subsample

from the near surface (at depth). This process was repeated 10000 times, and the bias, RMSE, standard deviation,385

and Pearson Correlation from the subsamples were compared against those calculated over the entire continuous and

discontinuous permafrost domain. Generally speaking, the bias, RMSE, standard deviation and correlation over the

entire continuous and discontinuous permafrost domain fall within 1 quartile of the median value from the Monte Carlo

Simulations; particularly in the top 30 cm. At depth, the median bias was 1◦ C smaller than the mean over the entire

permafrost domain, and correlations were 0.1 lower in many cases. However, the sampling error was not large enough390

to alter the fundamental conclusions of the study.

It is possible that validation sites in the discontinuous permafrost zone were preferentially located in regions where

permafrost is present. In parts of Alaska, and northern Quebec, for example, there are localized areas where warm

biases exist (Figure 9). This may be expected in regions where permafrost presence is ecosystem protected, as reanalysis

products are unable to account for local scale feedbacks of vegetation on permafrost presence. Given, however, that the395

discontinuous zone is a relatively small part of the validation dataset, and that warm biases in the discontinuous zone are
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generally limited to a few localized areas, the authors do not believe that selection bias has fundamentally influenced the

overall conclusions.

Time-series did not have a consistent start or end date - meaning that the metrics are calculated using different climatologies

across different grid cells. Thus, it is not possible to calculate a true uncertainty estimate. We’ve qualitatively acknowledged400

the main sources of uncertainty, and here we show an approximate estimate of the magnitude of uncertainty associated with

each component, using the standard deviation in soil temperature across time and as a function of station temperature. The

median standard deviation of in situ soil temperatures, for grid cells with more than 2 stations, is generally between 0.5◦ C

and 2◦ C (Figure 1, Panel B) - an order of magnitude smaller than the standard deviation of reanalysis soil temperatures for a

given station soil temperature; particularly over the cold season (Figure 6). Reanalysis air temperatures maintain a relatively405

consistent standard deviation between 1.25◦ C to 1.75◦ C for most products, except over the coldest in situ temperatures (not

shown). Unlike with soil temperature, the standard deviation of reanalysis 2m air temperature only increases modestly over

the cold season; along with the spread in standard deviation between products (not shown). This would suggest that the largest

degree of uncertainty in reanalysis soil temperatures over the Arctic is most likely contributed by differences in the land models

between products, rather than from uncertainties in observed soil temperatures, or from differences in product air temperatures.410

Future work should aim to investigate how differences in snow cover and snow density between the reanalysis products

may influence biases in the individual products. On a related note, future studies should emphasize how differences in the

land models of reanalysis products may account for the spread in soil temperatures. The ensemble mean data product has

potential applications in several fields, including the validation of model soil temperatures, species distribution models and

to inform models that require soil temperature inputs, such as hydrological models, or for permafrost simulations. A robust415

ensemble mean can be computed with four products (Figure 7), which means a higher resolution ensemble mean data product

could be created using a subset of higher resolution reanalysis products. For example, ERA-Interim, MERRA2, and JRA-55

have resolutions lower than 0.5 degrees. A 0.31 degree ensemble mean product, based on ERA5, ERA5-Land, CFSR, and

GLDAS-Noah is being explored, using a similar methodology.

Data availability. GTN-P data (GTN-P, 2018) is available from The Global Terrestrial Network for Permafrost, while the Kropp et al.420

(2020) dataset is available from Heather Kropp’s Arctic Data Center page. Russian Hydromet (Sherstiukov, 2012) data are available from

RIHMI-WDC, while Nordicana data can be obtained from Nordicana D. CFSR (Saha and Coauthors, 2010), CFSR2 (Saha and Coauthors,

2012), ERA-Interim (European Centre for Medium-Range Weather Forecasts, 2012), ERA5 (European Centre for Medium-Range Weather

Forecasts, 2019) and JRA-55 (Japan Meteorological Agency, 2013) data were obtained from the National Center for Atmospheric Research

(NCAR)’s Research Data Archive (RDA). GLDAS-CLSM (Li et al., 2020a, b), GLDAS-Noah (Beaudoing et al., 2020a, b), and MERRA2425

(Global Modeling and Assimilation Office, 2015) were obtained from the Goddard Earth Sciences Data and Information Services Center

(GES DISC), while ERA5-Land data (Muñoz-Sabater, 2019) was downloaded from the Copernicus Climate Change Service (C3S) Climate

Data Store (CDS). The ensemble mean soil temperature dataset has been made available on the Arctic Data Center.
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